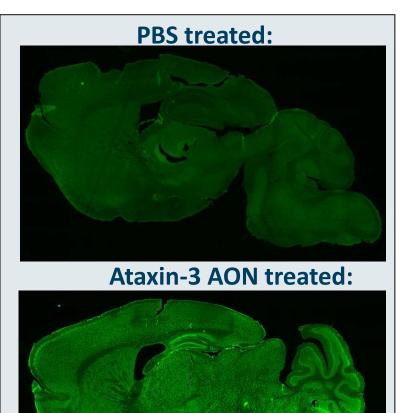
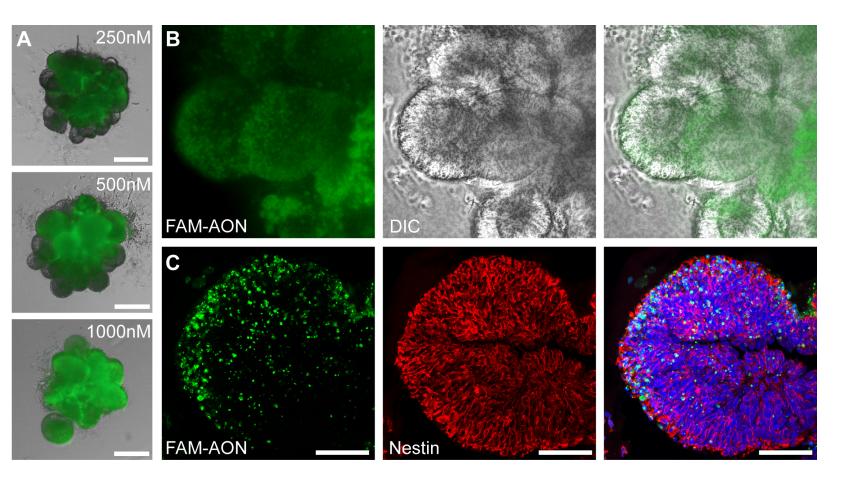

Developing mutation-specific splice switching ASOs for ultra-rare and private ataxias (EU)

Prof.dr. Willeke van Roon-Mom Department Human Genetics Leiden University Medical Centre The Netherlands Co-director DCRT (RNAtherapy.nl)

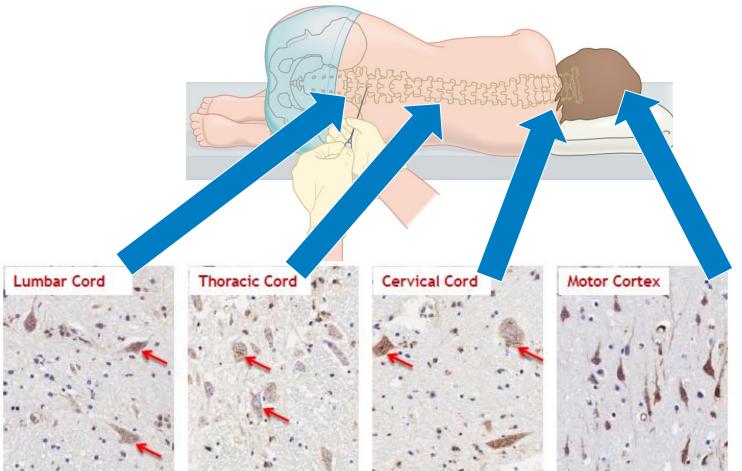
www.neurodlableiden.com www.RNAtherapy.nl

From genes to proteins – RNA targeting therapies

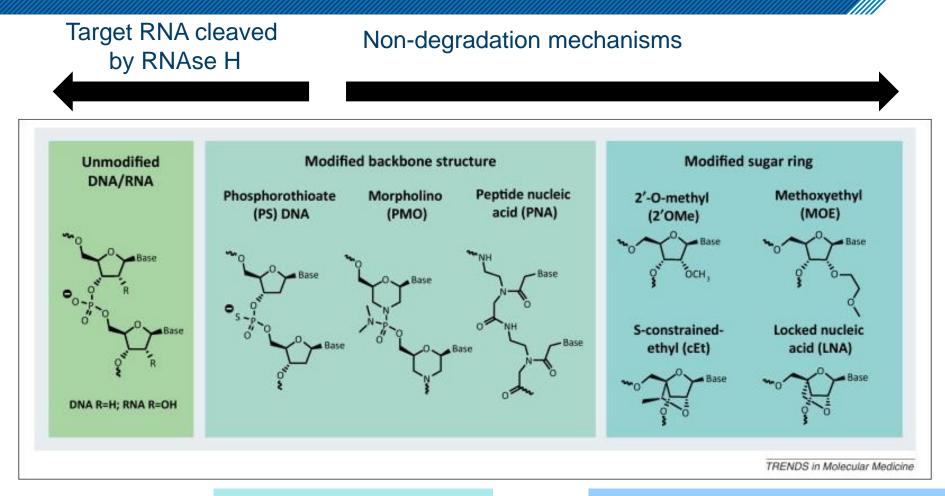



RNA targeting therapies

- ssRNA/DNA molecules
- Transient modification
- Repeated delivery
- Very efficient uptake in all brain cells
- High target specificity

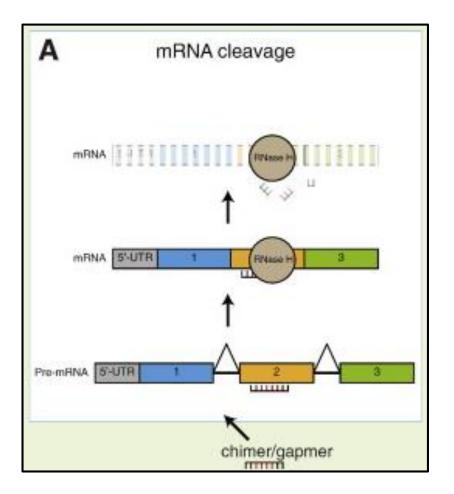

ASO distribution in mouse brain and brain organoids

Local delivery - Local high dose -Effect long lasting - Months


ASO distribution after intrathecal delivery humans

Repeated intrathecal bolus injections in children with SMA type I *R. Finkel, Nemours Children's Hospital*

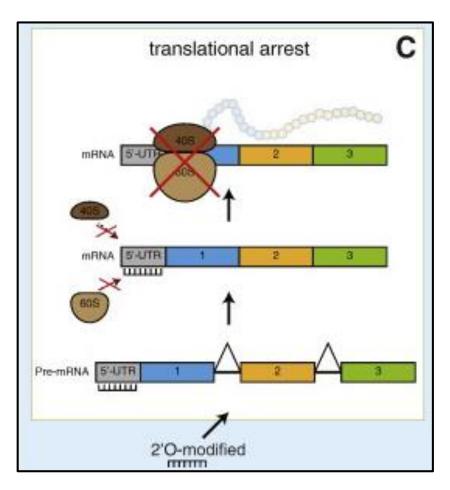
*ISIS-SMN_{Rx} in SC motor neurons indicated by red arrows, but also found in other neurons and glia


Antisense oligonucleotide modifications

increased target binding affinity

increased tissue half-life

Gapmer antisense oligonucleotide – RNA degradation

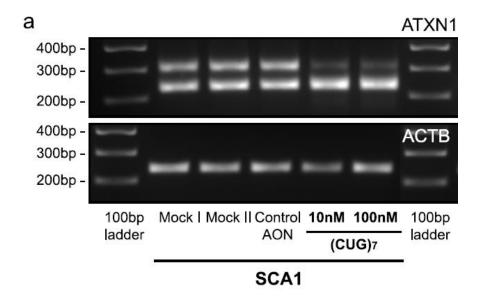

SCA3 NCT05160558 Phase I clinical study Biogen

For all PolyQ SCAs this has been shown to be effective in preclinical studies

Reduction of both wild type and mutant transcripts

No FDA/EMA approved Gapmer ASOs for neurological disorders

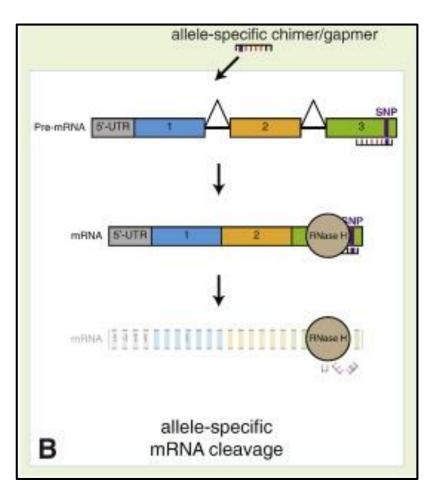
Allele 'specific' reduction of mutant protein



OPEN O ACCESS Freely available online

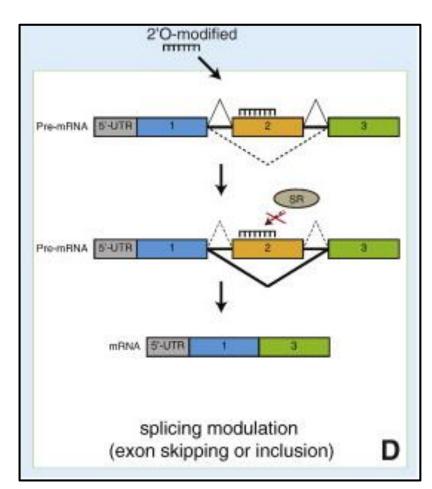
Targeting Several CAG Expansion Diseases by a Single Antisense Oligonucleotide

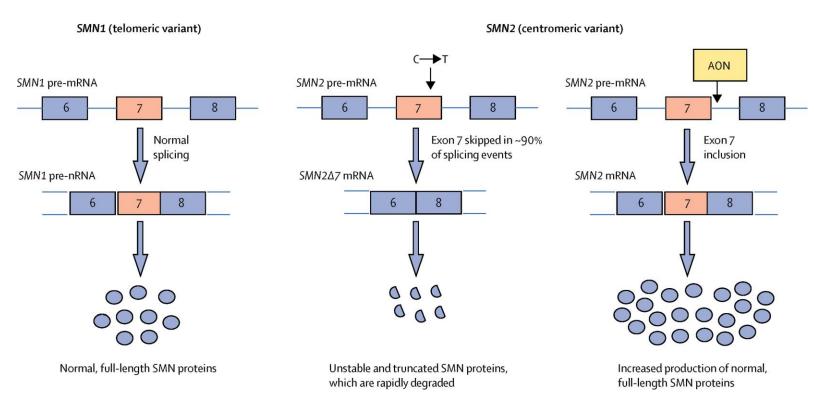
Melvin M. Evers¹, Barry A. Pepers¹, Judith C. T. van Deutekom², Susan A. M. Mulders², Johan T. den Dunnen^{1,3}, Annemieke Aartsma-Rus¹, Gert-Jan B. van Ommen¹, Willeke M. C. van Roon-Mom^{1*}


1 Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands, 2 Prosensa Therapeutics B.V., Leiden, The Netherlands, 3 Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands

PLos one

Allele specific reduction of mutant RNA

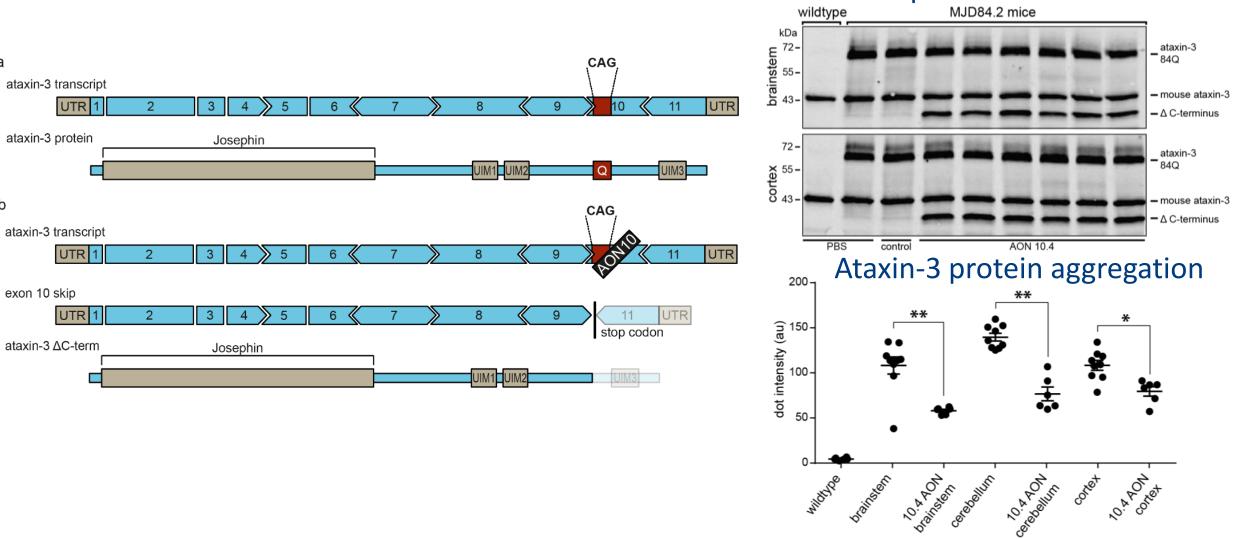



Allele specific knock down of mutant ataxin-3 through SNP specific Gapmer ASO (Hauser et al 2022)

Wave Life Science – preclinical stages for SCA3

No FDA/EMA approved Gapmer ASOs for neurological disorders

Antisense oligonucleotide mechanism of action



Splice modulating ASO, only approved AON by FDA and EMA for neurological disorders

Scoto et al 2018 Lancet

Ataxin-3 splice modulation in MJD84.2 mice

Ataxin-3 protein modification

15-Nov-22

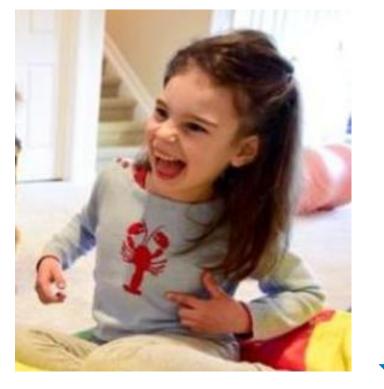
а

b

Milasen: the ultimate personalized medicine

The NEW ENGLAND JOURNAL of MEDICINE

BRIEF REPORT


Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease

1

e

а

r

- Genetic diagnosis
- ASO design
- Tests in fibroblasts
- FDA discussion: rat tox
- Investigational new drug application
- First treatment

The Dutch Center for RNA Therapeutics

- The Dutch Center for RNA Therapeutics (DCRT) is a non-profit consortium
- Aim is to develop tailor-made RNA therapy for patients with ultrarare genetic mutations focused on eye and the central nervous system disorders
- DCRT@lumc.nl for any questions.

Annemieke Aartsma-Rus

LU MC

Rob Collin

Radboudumc

Willeke van Roon-Mom

Academically driven European platform for the development and implementation of RNA Therapies for ultra-rare diseases coordination: University of Tübingen (DE) + University of Heidelberg (DE) + University Medical Center Leiden (NL)

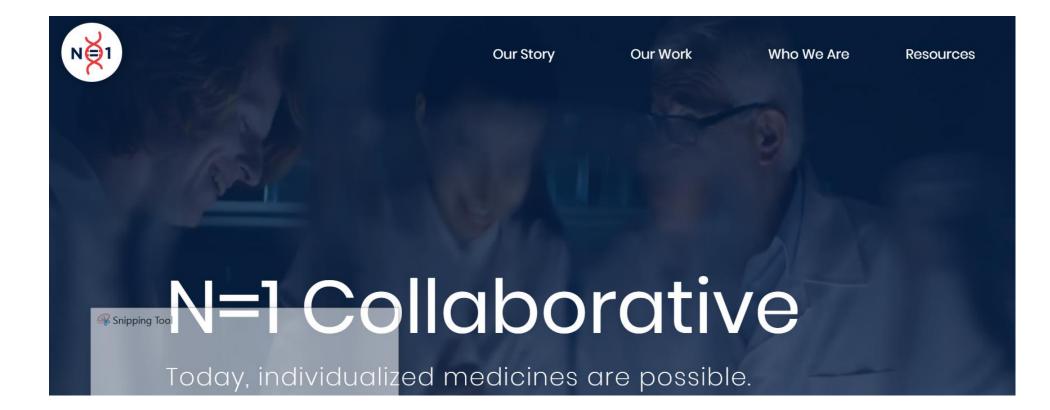
Annemieke Aartsma-Rus

Willeke van Roon-Mom

Holm Graessner

Matthis Synofzik

Rebecca Schüle



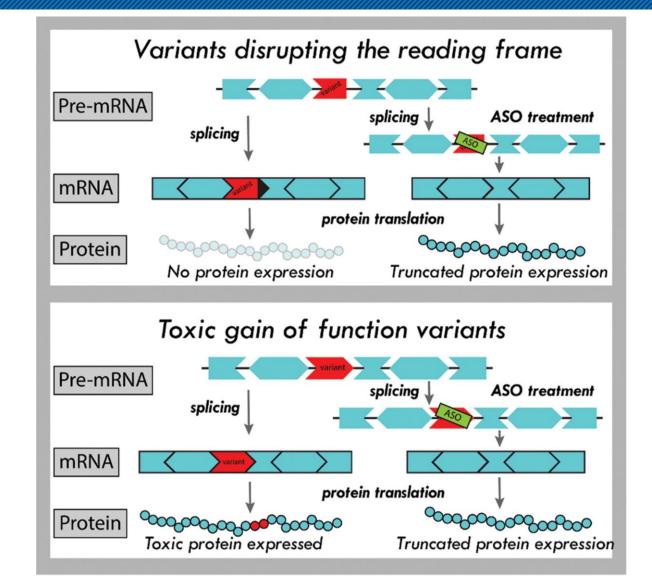
L U M C

N1C – n-of-1 collaborative


Patient specific ASO treatment in the EU

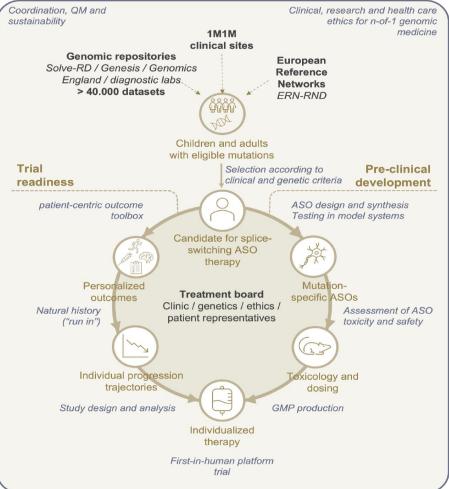
- ASO design: use backbone and chemistry of Nusinersen as a lot of data on pharmacokinetics and pharmacodynamics is known
- Targeting mutation types rather than individual diseases (\rightarrow splice-modulating ASOs)
- Target tissue: CNS allows standardization of application \rightarrow intrathecal
- No clinical trial/no EMA registration
- Named patient setting
- Standardization and quality control framework for all relevant processes (scientific, preclinical, clinical, regulatory, logistical, legal, ethical, financial) in close contact with regulators
- New ethical framework (patient selection, cost, research vs. named-patient application,)
- European network of 1M1M clinical sites qualified to conduct ASO treatments for rare neurological diseases

ASO design ~0.5 year	In vitro tox study	<i>In vivo</i> safety study ~0.5 year	Treatment and monitoring	
Nat	ural histo	ory	Treatment effect	


ASO-mediated splice modulation

Synofzik et al NAT 2022

ASO-mediated splice modulation


Synofzik et al NAT 2022

1M1M network – treatment development pipeline

Patient-specific tailored treatment development requires a novel, non-standard, but still systematic treatment development process, which requires specific cross-disciplinary expertise in all steps from patient identification to translation into clinics.

Pharma approach	 Academic network approach: Patients/families, Preclinical and clinical researchers, Hospital pharmacies, ASO manufacturing Experts in safety studies, Regulators, Payers, and Policy makers
 12-12 years Preclincal development including efficacy and toxicity studies Phase 1/2/3 trials On average 2.6 billion Euro costs Market authorization 	 Maximum 18 months No animal models for the respective mutations, etc. No or very reduced in-vivo tox studies No phase 1/2/3 trials possible; standard trial designs and analyses models not appropriate; Standard outcomes not appropriate to capture change on an n-of-1 level Comparable small costs (< 0.5 million) No market authorization

1M1M processes: The 1M1M pathway towards individual patient selection and treatment decisions

1. Case Dossier Patient data sufficient for gene group?

- Submitted by clinician
- Completeness check secretariat UT

2. Gene Group Meeting

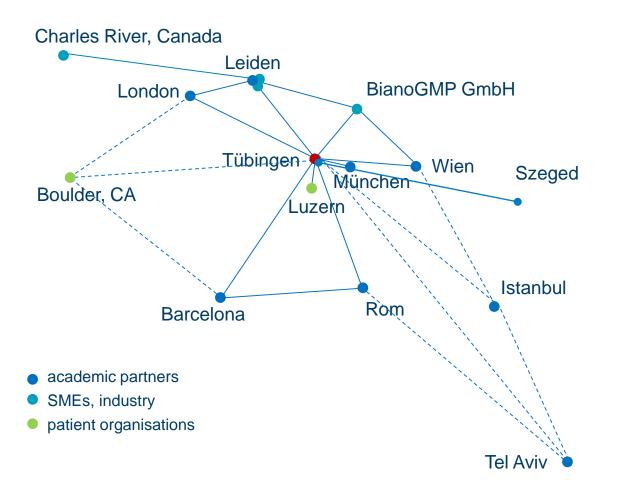
Patient and disease information enough to decide on treatment readiness?

Meeting with

- Submitting clinician
- Clinical and research leads UT & LUMC
- Clinical disease experts
- ASO biologists
- Ad hoc domain experts as needed
- 1M1M secretariat UT

3. Treatment Board meeting

Decide on start/stop development Decide on start/stop treatment



Meeting with

- Submitting clinician
- Clinical and research leads UT & LUMC
- PI representatives of gene group (1-2)
- External experts (N1C)
- Patient organisation representative
- Ethicist
- Disease domain experts as needed
- Independent clinical experts as needed
- ASO biologists as needed
- 1M1M secretariat UT

1M1M partners

Academic partners:

- Eberhard-Karls Universität Tübingen, Germany
- Leiden University Medical Centre, Netherlands
- University College London, UK
- Medical University Vienna, Austria
- Ludwig Maximilians University Munich, Germany
- Pediatric Hospital Bambino Gesù, Italy
- Koc University, Turkey
- Sheba Medical Center, Israel
- Vall d'Hebron Barcelona Hospital, Spain

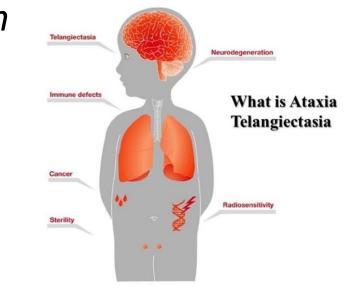
Industry partners:

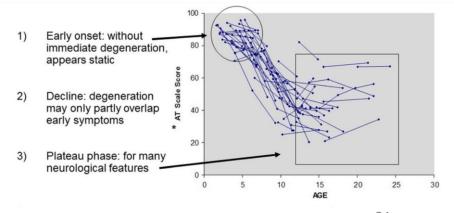
- BianoGMP GmbH, Germany
- Biotalentum, Szeged, Hungary
- Charles River, Canada

Patient advocacy organisations:

- European Leukodystrophies Association
- EuroAtaxia
- Valeria Association
- Mila's Miracle Foundation

Associated partners and additional collaborations:


- CONSILIUM Salmonson & Hemmings
- N=1 ASO collaborative
- European Reference Network for Rare Neurologica¹ Diseases


Rothblum-Oviatt et al, 2016, OJRD

1M1M – 1 mutation, 1 medicine

- Example ASO design pipeline: already first-in-human
 - ATM (ataxia teleangiectasia)
- autosomal-recessive disease
- ATM mutations
- multi-systemic early-onset ataxia

• classic AT: loss of ambulation between age 10-20yrs

Tim Hu

1M1M – 1 mutation, 1 medicine

Tim Hu Matthis Synofzik Rebecca Schüle

Example ASO design pipeline: ATM - already first-in-human

target ATM mutation: c.7865 C>T, p. Ala2622Val⇒ generates a cryptic exonic splice donor site

Fig. 2. Strategy for rescuing abnormal splicing induced by the c.7865C>T mutation, employing steric blockade by a splice-switching antisense oligonucleotide.

- subject #1: Ipek: 3 years treated in Boston since 2018, already on ASO maintenance dose
- 2. subject #2: P.K: 4 years, transferred from Tübingen to Boston in 2021 for treatment, ASO dose

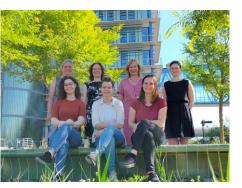
escalation phase, treatment continuation inTübingen from Sept 2022 on

• c.7865 C>T, p. Ala2622Val; in trans with c.829G>T,p. Glu227*

Acknowledgements

LUMC – Neuro-D group

- Willeke van Roon-Mom
- Barry Pepers
- Ronald Buijsen
- Elena Daoutsali
- Tom Metz
- Linda van der Graaf
- Linde Bouwman
- Elsa Kuijpers
- Laura Kerkhof
- Mariana Ramos
- Bas Voesenek
- Hannah Bakels
- Eleni Mina
- Daniel Bijster
- Sean Visser



DCRT - LUMC

- Annemieke Aartsma-Rus
- Anouk Spruit
- Marlen Lauffer
- Pauline v/d Graaf
- Bianca Zardetto
- DCRT radboudumc
- Rob Collin

DCRT - ErasmusMC

- Ype Elgersma

1M1M network

Industry partners:

- BianoGMP GmbH, Germany
- Charles River, Canada

Patient advocacy organisations:

- EU Leukodystrophies Association
- EuroAtaxia
- Valeria Association
- Mila's Miracle Foundation

Associated partners and collaborators:

- N=1 ASO collaborative
- EU Reference Network for Rare Neurological Diseases

	Name	Site
	Marc Engelen	Amsterdam
	Nicole Wolf	Amsterdam
	Juan dario Ortigoza Escobar	Barcelona
	Alfons Macaja	Barcelona
	Maria Judit Molnar	Budapest
	Marina Koning-Tijssen	Groningen
	Emil Ylikallio	Helsinki
	Nazli Basak	Istanbul
	Jørgen Erik Nielsen	Kopenhagen
	Annemieke Aartsma-Rus	Leiden
	Willeke van Roon	Leiden
	Rik Vandenberghe	Leuven
า	Kristl Claeys	Leuven
•	Damjan Osredkar	Ljubjana
	Paul Gissen	London
	Bart van de Warrenburg	Nijmegen
	Manuel Menéndez	Oviedo
	Lucie Stovickova	Prag
	Nicita Francesco	Rome
	Enrico Bertini	Rome
	Andrea Bevot	Tübingen
	Ludger Schoels	Tübingen
	Matthis Synofzik	Tübingen
	Rebecca Schüle	Tübingen
	Holm Graessner	Tübingen
	Michael Freilinger	Viena
	Schmidt Wolfgang	Viena
	Anke Hensiek	Cambridge
	Rita Horvath	Cambridge
	Zanni Ginevra	Rome
	Nofar Mor	Tel Aviv
	Matias Wagner	Munich

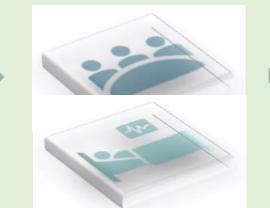
1M1M processes: The 1M1M pathway towards individual patient selection and treatment decis

1. Case Dossier Patient data sufficient for gene group?

- Submitted by clinician
- Completeness check secretariat UT

2. Gene Group Meeting

Patient and disease information enough to decide on treatment readiness?



Meeting with

- Submitting clinician
- Clinical and research leads UT & LUMC
- Clinical disease experts
- ASO biologists
- Ad hoc domain experts as needed
- 1M1M secretariat UT

3. Treatment Board meeting

Decide on start/stop development Decide on start/stop treatment

Meeting with

- Submitting clinician
- Clinical and research leads UT & LUMC
- PI representatives of gene group (1-2)
- External experts (N1C)
- Patient organisation representative
- Ethicist
- Disease domain experts as needed
- Independent clinical experts as needed
- ASO biologists as needed
- 1M1M secretariat UT

Access options for mutation-specific ASOs

Unlicensed access options for groups of patients

Clinical trial (EC) 2001/83 Article 3(3)

Compassionate use (EC) 726/2004 Article 83

- groups of patients with chronically or seriously debilitating or lifethreatening disease
- medicinal product is undergoing clinical trial or subject of a marketing authorization application

Centralized market authorisation in the EU (EC) 726/2004

article 14(8): 'exceptional circumstances'

ATMP regulation (EC) 1394/2007

Orphan regulation (EC) 141/2000

Unlicensed access options for <u>single</u> patients

Hospital exemption (EC) 1394/2007 Article 28(2)

- ATMP custom-made for an individual patient; not routinely produced
- administered in a hospital setting under exclusive responsibility of a medical practitioner
- produced and administered in the <u>same</u> member state
- manufacturing authorised by a competent authority of the member state
- quality standards equivalent to (EC) 726/2004

Named patient use (EC) 2001/83 Article 5(1)

- to fulfill special needs
- purely therapeutic considerations