Determining clinical meaningful change of clinical and non-clinical outcomes: how can it be achieved? Sophie Tezenas du Montcel ### Which outcomes to consider? - Clinical outcome assessment (21st Century Cures Act-FDA) - Measurement of a patient's symptoms, overall mental state, or the effects of a disease or condition on how the patient functions - Includes a patient-reported outcome ### Non clinical outcome - Biomarker - Digital measures of Health - **–** ... Manta et al, Digit Biomark 2020 Need to be meaningful for patients Meaningful Aspect of Health (MAH) Aspect of a disease that a patient - does not want to become worse - wants to improve - wants to prevent Manta et al, *Digit Biomark* 2020 Need to be meaningful for patients Meaningful Aspect of Health (MAH) Ability to perform Ambulatory activities Manta et al, Digit Biomark 2020 Manta et al, *Digit Biomark* 2020 Manta et al, Digit Biomark 2020 Manta et al, Digit Biomark 2020 Manta et al, Digit Biomark 2020 - Must have demonstrate psychometric properties - Validity: degree to which evidence supports the performance of an instrument result for its intended purpose - Reliability: how reproducible is the measure? - Responsiveness to change - Statistical significant change - Definition of a minimal change in score considered relevant: Minimal Clinically Important Difference (MCID) # How to define the Minimal Clinically Important Difference (MCID)? #### Anchor-based methods - Examine the relationship between a measure with another measure of clinical change (the anchor) - Anchor can be derived from clinical outcomes or Patient-Reported Outcomes ### Distribution-based methods Use statistical properties of the distribution of outcomes scores ### Opinion-based methods Based on Delphi methods: consensus between experts # Anchor-based methods - Type: Cross-sectional Schmitz-Hübsch et al, Neurology 2006 | Method | Instrument evaluated in relation to: | Advantages | Disadvar | 30- | |--|---|--|---|------------------------| | Comparison to disease-related criteria | COMORITM OF | Disease Staging Disease groups (genotype) | May noGroupsvariable | | | Comparison to non disease-related criteria | Impact of life events | Easy to obtain Stressfull event ernal basis for interpretation | May noGroups variableRelation | C 407 • | | Preference ratings | Pairwise comparisons of health states | All health states are compared | May noHypothTime c | 30 Y 20 - 10 - | | Comparison to known population(s) | Functional or dysfunctional populations | Uses normative information | Norma
availabAmoun
specifie | t of change needed not | # Anchor-based methods – Type: Longitudinal | Method | Instrume | d in | Advantages | Disadvanta | ges | | | |--|------------------------------------|----------------------------|---|------------|---|-----|--| | | relation | Schmitz-H | Schmitz-Hübsch et al, <i>Neurology</i> 2010 | | | | | | Global ratings of change | Patients
clinicians
of impro | Standardized response mean | | nt | | | | | | | | Whole sample | PGI: Worse | PGI: Stable | ıle | | | Prognosis of future events Changes in disease related outcome | some fu | | (n = 171) | (n = 120) | (n = 43) |)t | | | | | SARA | Converters | 0.59 | 0.21 | | | | | | INAS | 0.26 | 0.33 | 0.17 | | | | | | | outcome measureKnown psychometric properties | | precisionAssumes strong Instrument – outcome correlation | | | ### Distribution-based methods | Method | Calculation | Advantages | Disadvantages | |----------------------------------|----------------------------|--|---| | Paired t-
statistic | Difference/SE mean change | None | Increases with sample size | | Growth curve analysis | Slope/SE slope | Not limited to pre-test and post-test scores Uses all of the available data | Increases with sample sizeRequires large sample sizesAssumes data missing at random | | Effect size (ES) | Difference/Pre-
test SD | Standardized units Benchmarks for in Chan et a Independent of sa Scale Entered | Decreases with increased baseline I, Mvt Disord 2011 sample Standardized response mean rong samples | | Standardized response mean (SRM) | Difference/SD of change | Standardized units CCFS Independent of sa Based on variability of orders | 0.117 0.320 of effectiveness of 0.140 0.411 | SD: standard deviation SE: standard error ### Distribution-based methods | Method | Instrument evaluated in relation to: | Advantages | Disadvantages | |-------------------------------------|---|---|--| | Responsiveness statistic | Difference/SD of change in a stable group | Standardized units More conservative than effect size Independent of sample size Takes into account spurious change due to measurement error | Data on stable subjects frequently not available | | Standard error of measurement (SEM) | $\frac{ES}{\sqrt{1-r}}$ where $r = reliability$ measure | Relatively stable across populations Takes into account the precision of the measure Cutoffs based on confidence intervals | Assumes measurement error to be constant across the range of possible scores | | Reliable change index | $\frac{difference}{\sqrt{2(SEM)^2}}$ | Relatively stable across populations Takes into account precision of measure Cut-offs based on confidence intervals | Assumes measurement error to be constant across the range of possible scores | SD: standard deviation SE: standard error ### Conclusions - Define Meaningful Aspect of Health (MAH) and Concept of Interest (COI) of the outcome to be sure that it is related to a patient meaningful aspect - Define the Minimal Clinical Important Change (MCID) to be able to interpret changes - Use combined Anchor and distribution methods