

Cerebellar transcranial direct current stimulation in spinocerebellar ataxia type 3:

a randomized, double-blind, sham-controlled trial

Roderick Maas, MD

Department of Neurology, Center of Expertise for Rare and Genetic Movement Disorders, Donders Institute for Brain, Cognition, and Behaviour Radboud University Medical Center

Nijmegen, the Netherlands

Cerebellar transcranial direct current stimulation

Parazzini et al. Clin Neurophysiol. 2014; Van Dun et al. Front Hum Neurosci. 2016; Fernandez et al. Cerebellum 2020

Cerebellar anodal tDCS in degenerative ataxias

 N = 20 SCA2 (5) SCA38 (2) SCA14 (1) Friedreich ataxia (1) AOA type 2 (1) FXTAS (1) MSA-C (4) ILOCA (5) 	 Treatment Anodal tDCS vs. Sham stimulation ✓ Anode: 2 cm below inion ✓ Cathode: right deltoid ✓ 2 mA, 20 min ✓ 5 days per week for 2 weeks 	SARA score Sham stimulation Anodal tDCs SARA score Anodal tDCs SARA score Table Anodal tDCs To T1 T2 T3 Time

Important issues

- Etiological heterogeneity
- Duration of effects?
- Effects on cerebellar non-motor functions?

Benussi et al. Brain Stimul. 2017

SCA3-tDCS study

Inclusion criteria

- Age ≥ 16 years
- ATXN3 gene mutation
- $-3 \leq$ SARA score ≤ 20

Exclusion criteria

- Epilepsy
- History of brain surgery
- Metallic implants in or near the skull
- Pacemaker
- Pregnancy
- Severe skin disease affecting electrode location
- Significant comorbidities that interfere with ADL

Protocol

Randomization and blinding

- Block randomization (1:1) with randomly selected variable block sizes
- SARA score as stratification variable
- Patients and investigators blinded

Intervention

- NeuroConn constant current stimulator
- Two 7 x 5 cm rubber electrodes
- 30 s ramp-up, 20 min stimulation at 2 mA, 30 s ramp-down

Outcome measures

Motor

 Motor SARA score 8 m walk test 9-hole peg test PATA repetition rate 	 Patient-reported Patient Global Impression of Change Scale EQ-5D-5L Patient Health Questionnaire-9 Profile of Mood States Friedreich Ataxia Rating Scale ADL score
 Cognitive Cerebellar cognitive affective syndrome scale Total score Number of failed tests 	 Neurophysiological Cerebellar brain inhibition Static posturography Delay eyeblink conditioning

Baseline clinical and demographic characteristics

Sham tDCS (n = 10) Real t	:DCS (n = 10)
---------------------------	---------------

Baseline clinical and demographic characteristics

	Sham tDCS (n = 10)	Real tDCS (n = 10)
Age (y)	51.4 ± 9.8	52.4 ± 10.8
Age of onset (y)	42.6 ± 8.8	45.2 ± 9.9
Disease duration (y)	8.8 ± 6.2	7.2 ± 4.7
CAG repeat length	67.3 ± 3.1	67.8 ± 3.8
Sex (% male)	5 (50)	7 (70)
SARA score	12.5 ± 4.7	11.3 ± 3.2
8MWT (s)	6.8 ± 2.8	5.7 ± 0.9
9HPT dominant hand (s)	31.1 ± 9.5	32.1 ± 7.4
9HPT non-dominant hand (s)	33.9 ± 7.8	33.3 ± 5.0
FARS ADL score	11.9 ± 3.5	12.6 ± 4.1
CCAS-S score	83.4 ± 11.2	80.3 ± 7.0

Primary endpoint – SARA score

SARA subscores

SARA axial = gait + stance + sitting

SARA appendicular = finger chase + nose-finger test + diadochokinesis + heel-shin slide

d

Patient-reported outcome measures

Cognitive outcomes – CCAS-S

d

Neurophysiological outcome measures – cerebellar brain inhibition (CBI)

Discrepancies between trials: Patient-related factors?

	Present study	Benussi et al. 2017	P value
Age (y)	51.9 ± 10.0	45.3 ± 14.6	0.18
Disease duration	8.0 ± 5.4	16.0 ± 9.4	0.008
SARA score	11.9 ± 3.9	17.9 ± 6.5	0.006
8MWT	6.3 ± 2.1	10.8 ± 6.7	0.011
9HPT dominant hand (s)	31.6 ± 8.3	50.9 ± 23.1	0.003
9HPT non-dominant hand (s)	33.6 ± 6.4	55.0 ± 21.9	< 0.001

Discrepancies between trials: SCA3-related factors?

Discrepancies between trials: tDCS-related factors?

Conclusion

- First cerebellar tDCS study in an etiologically homogeneous group of ataxia patients
- Overall, no motor or cognitive improvement following 10 cerebellar tDCS sessions and no significant modulation of cerebellum-M1 connectivity in SCA3 patients
- Individual predictors of treatment response?

d

Acknowledgements

Radboud University Medical Center

Steven Teerenstra, PhD Sven Killaars, BSc Geert van Bon, MSc Vivian Weerdesteyn, PhD Bart van de Warrenburg, MD, PhD

Helmholtz Institute, Utrecht University Dennis Schutter, PhD

Donders Institute for Brain, Cognition, and Behaviour Ivan Toni, PhD University Hospital Bonn Thomas Klockgether, MD

University Hospital Essen Dagmar Timmann, MD

Questions?

roderick.maas@radboudumc.nl

Radboud University Radboudumc