Advanced multimodal MRI detects premanifest and early-stage alterations in SCA1 and SCA3 with high sensitivity

Jayashree Chandrasekaran¹, Emilien Petit², Young-Woo Park¹, Sophie Tezenas du Montcel², James M. Joers¹, Michal Povazan³, Guita Banan⁴, Romain Valabregue², Philip Ehses⁵, Jennifer Faber^{5,6}, Pierrick Coupé⁷, Chiadi U. Onyike³, Peter B. Barker³, Jeremy D. Schmahman⁸, Eva-Maria Ratai⁸, S. H. Subramony⁴, Thomas H. Mareci⁴, Khalaf O. Bushara¹, Henry Paulson⁹, Alexandra Durr², Thomas Klockgether^{5,6}, Tetsuo Ashizawa¹⁰, Christophe Lenglet¹, Gülin Öz¹ and READISCA Investigators

¹University of Minnesota, Minneapolis, MN, USA; ²Sorbonne University, Paris, France; ³Johns Hopkins University, Baltimore, MD, USA; ⁴University of Florida, Gainesville, FL, USA; ⁵German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ⁶University Hospital Bonn, Bonn, Germany; ⁷Université de Bordeaux, France, ⁸Massachusetts General Hospital, Charlestown, MA, USA; ⁹University of Michigan, Ann Arbor, MI, USA; ¹⁰The Houston Methodist Research Institute, Houston, TX, USA READISCA Clinical Trial Readiness for SCA1 and SCA3

UNIVERSITY

OF MINNESOTA

Driven to Discover™

Background

- READISCA: multinational longitudinal clinical trial readiness study for SCA1 and SCA3
- MRI and MRS detect early cerebral and cerebellar changes in SCAs ^[1,2,3].

AIM

- 1) Identify morphometric, microstructural and neurochemical MR metrics most sensitive to early abnormalities
- 2) Investigate associations of MR metrics with early clinical presentation

Table 1: Cohort Characteristics

Variable	Control	SCA1 Preataxic	SCA1 Ataxic	SCA3 Preataxic	SCA3 Ataxic
N	17	11	14	28	37
Gender (female)	7 (41%)	8 (73%)	9 (67%)	19 (68%)	18 (49%)
Age (median)	43	38	46.5	36	50
SARA (median)	0	1	8.3	1.3	7
CAG repeat length		42	45	70	71.5
Reported age at onset			40 (<i>N</i> =11)		45 (<i>N</i> =35)

[1] Reetz et al, Brain 2013, [2] Park et al Front Neurol 2020, [3] Joers et al Ann Neurol 2018

No significant differences in COA btw preataxic SCA vs controls

MR Protocol

6 imaging sites, 3T Siemens

Sequence	Pixel dim. (mm x mm x mm)	TR/TE/TI (ms)	
MPRAGE 3D T ₁ *	0.8 iso	2400/2.22/1000	
$3DT_2w^*$	0.8 iso	3200/563/-	
DWI*	1.5 iso	3230/89.2/-	1
MRS**	-	3000/30	

*T1, T2, DWI: HCP lifespan protocol

**Two MRS VOIs used: ¹pons,
16x16x16 mm³ and ²cerebellar white matter(CBWM), 17x17x17 mm³

[4] Fischl 2004 Neuroimage, [5] Romero 2016 NeuroImage,
[6] Park et al Front Neurol 2020, [7] Provencher Magn Reson Med 1993

Data Analysis

Blinded to diagnosis

Volumetry

- FreeSurfer 6.0.3^[4] for (sub-)cortical and brainstem segmentation.
- CERES tool^[5] for cerebellum segmentation.

Diffusion MRI (Microstructure)

 FSL DTIFIT tool for fractional anisotropy (FA), and diffusivities (AD, RD, MD) in white-matter (WM) ROIs^[6].

MRS:

• LCModel^[7] using water as internal concentration reference.

Statistical Analysis

- MR measures compared between preataxic, ataxic SCA and control groups using non-parametric testing accounting for multiple comparisons (Bonferroni-Holm)
- Pairwise comparisons of significant metrics between preataxic and control groups with Dunn adjustment.

Preataxic SCA1- atrophy of pons, medulla and cerebellar white matter

Volumetry RESULTS

Preataxic SCA3- atrophy of Xth lobule

Cerebellar volumetry

SCA1 preataxic group: lower FA in pontine crossing tract and inferior cerebellar peduncle.

Microstructure RESULTS

Widespread increase in mean diffusivity in preataxic SCA3 - cerebellar peduncles, pontine crossing and corona radiata tracts.

0.05 0.04 0.03 p value 0.02 0.01

Metrics most sensitive to preataxic abnormalities

SCA1

Metrics most sensitive to preataxic abnormalities

MR associations with ataxia symptoms (SARA, FARS-FS), non-ataxia signs (INAS), activities of daily living (FARS-ADL) and estimated ataxia duration (Est-Dur)

tNAA/ml (

Cerebellar afferent and efferent pathways underlie earliest symptoms

MR – Clinical correlations

Strongest MR correlates of ataxia, ADL and estimated duration: MRS and diffusion measures

SCA1

SCA3

- Atrophy and microstructural damage in the brainstem and cerebellar peduncles and neurochemical abnormalities in the pons prominent at preataxic stage
- A neurochemical measure was the most sensitive metric to preataxic changes in SCA1 and a microstructural metric was the most sensitive metric to preataxic changes in SCA3
- MR metrics strongly associated with ataxia symptoms, activities of daily living and estimated disease duration

Acknowledgements

• Supported by NIH U01 NS104326

Ataxia imaging team @ CMRR

