

# Increasing power of clinical trials in SCA1, SCA2, SCA3 and SCA6 with efficient designs and SARA scales

Emilien Petit, Sophie Tezenas and the Readisca consortium











• Establish the world's largest participant group of early-stage and symptomless SCA1 and SCA3 individuals

• Validate imaging signs in early stage and symptomless SCA1 and SCA3 individuals

• Adapt recent developments on statistical design and analysis of small population trials to future clinical trials for SCAs



## The data

3 cohorts :

- EUROSCA cohort : European patients
- CRC-SCA cohort : US patients
- SPATAX cohort : French patients

All visits with SARA within 2.25 years follow-up were kept

=> 1110 individuals, 2518 visits



SCA1 SARA individual progression



## **SARA scales progression**

- SARA : Full SARA, sum of all items (/40)
- Axial SARA : sum of axial items (/24)
- Appendicular SARA : sum of appendicular items (/16)
- All scale were normalized between 0 and 1
- Check for linearity
- Check for latent classes
- Linear mixed model by SCA

|      | SARA          | Ax-SARA         | Ap-SARA                     |
|------|---------------|-----------------|-----------------------------|
| SCA1 | 0.055 ± 0.004 | 0.059 ± 0.004 * | 0.046 ± 0.006 *             |
| SCA2 | 0.030 ± 0.003 | 0.033 ± 0.003   | 0.028± 0.004                |
| SCA3 | 0.032 ± 0.003 | 0.040 ± 0.003 * | 0.022 ± 0.005*              |
| SCA6 | 0.023 ± 0.004 | 0.030 ± 0.005 * | 0.009 ± 0.005*<br>(p=0.069) |





## What to do with this to improve trials power?





 Comparison of mean change from baseline between groups (t.test) ?



- Comparison of mean change from baseline between groups (t.test) ?
- Mixed model for repeated mesures (MMRM)?



- Comparison of mean change from baseline between groups (t.test) ?
- Mixed model for repeated mesures (MMRM) ?
- Linear slope mixed model ?

## **Linear slopes mixed models**





## **Linear slopes mixed models**







#### P Institut

## **Simulation studies : Follow-up duration**

#### Simulating clinical trial datasets :

- Choose follow-up duration, number of visits (equally spaced), number of patients, treatment effect

- Randomly generate individual slopes and intercepts following SCA1 SARA progression

- Apply treatment effect on individual slopes in the treatment group

- Add noise equal to mean residual error of SCA1 SARA model

- Create 5000 datasets and get power as the percentage of significant runs.

## **Simulation studies : Follow-up duration**

#### Simulating clinical trial datasets :

- Choose follow-up duration, number of visits (equally spaced), number of patients, treatment effect

- Randomly generate individual slopes and intercepts following SCA1 SARA progression

- Apply treatment effect on individual slopes in the treatment group

- Add noise equal to mean residual error of SCA1 SARA model

- Create 5000 datasets and get power as the percentage of significant runs.



Power with a treatment effect of 50% reduction on slope with 30 participants in each arm and visits every 6 months. Parameters are taken from SCA1 SARA progression.

## Simulation studies : Number of visits



*Powers for a 1-year trial with 30 participants in each arm and 50% treatment effect* 

## Simulation studies : Number of visits



*Powers for a 1-year trial with 30 participants in each arm and 50% treatment effect* 



Follow-up time as a greater impact than number of visits on power

## Simulation studies : Number of visits



*Powers for a 1-year trial with 30 participants in each arm and 50% treatment effect* 

|      | SARA | Ax-SARA | Ap-SARA |
|------|------|---------|---------|
| SCA1 | 34   | 35      | 102     |
| SCA2 | 65   | 80      | 198     |
| SCA3 | 58   | 52      | >200    |
| SCA6 | 180  | >200    | >200    |

Sample size for a 2 years trial to reach 90% power



Follow-up time as a greater impact than number of visits on power

## Discussion and conclusion

Conclusions :

- Axial SARA seems to have similar power than full SARA
- Increasing the number of visits whithin the same trial duration increases power.
- This increase is less efficient than increasing the follow-up duration



## **Aknowledgments**

#### **Cohorts Pls**



Thomas Klockgether for the EUROSCA consortium

#### **Readisca statistical team**



Sophie Tezenas du Montcel



Tetsuo Ashizawa for the CRC-SCA consortium







Alexandra Durr for the SPATAX consortium

READISCA Clinical Trial Readiness for SCA1 and SCA3







La science pour la santé \_\_\_\_\_ From science to health

