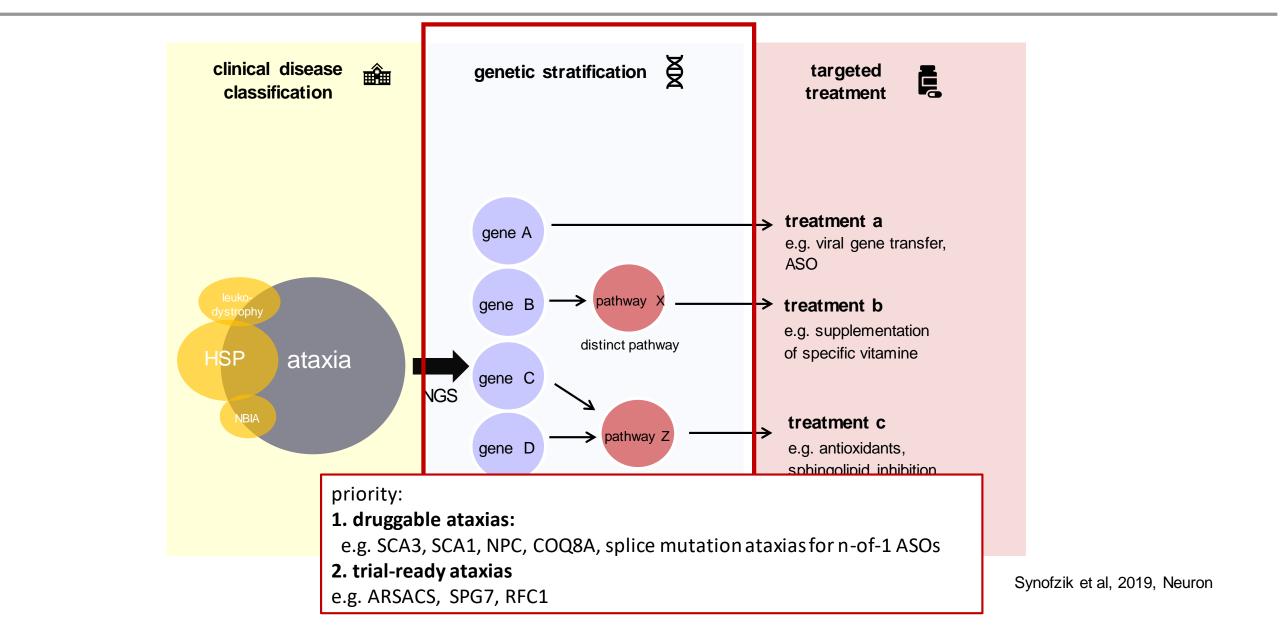
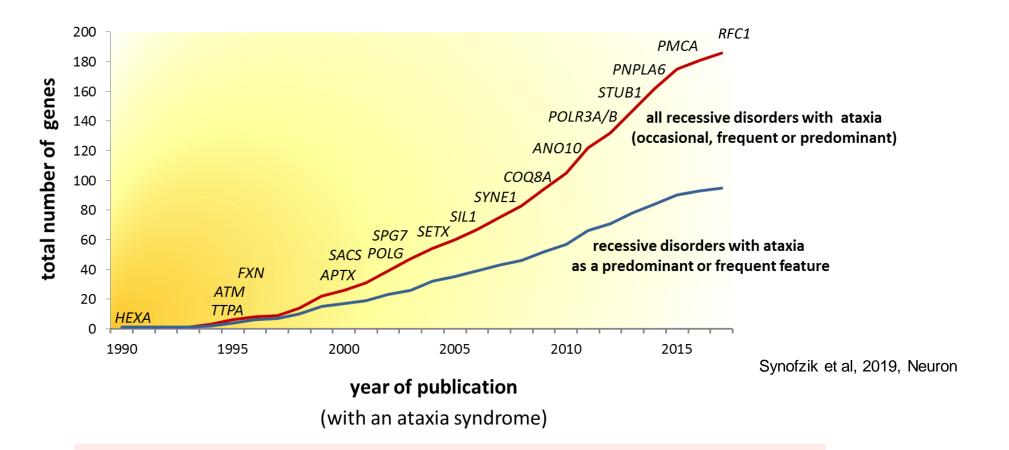


NGS analysis in ataxias: what it is and how it is done?

AGI webinar, January 18th, 2022


outline of the webinar

1. introduction


- 2. Sanger, panel, exome, genome: what are the differences, strengths and weaknesses?
- 3. *filter settings*: the crucial key in understanding NGS diagnostic and research reports
- 4. major international NGS ataxia pipelines and ways to contribute
- 5. outlook: the next steps in ataxia genomics
- 6. discussion & questions

Genetic stratification is key to ataxia trial-readiness:

from DIAGNOSTICS to THERANOSTICS

ataxia genetics: the current status

- single gene sequencing (=Sanger sequencing) not really helpful → NGS needed!
- any "hardwired" NGS panel is out of date already at time of sequencing

➔ exome first strategy!

→ SCA 1,2,3 and 6: >70% of all dominant ataxias !

➔ FA and RFC1: >40% all recessive ataxias !

The following statement about ataxia genetics is true:

Repeat expansions in ataxias

- 1. are much rarer than e.g. in ALS, HSP or FTD
- 2. account for the most frequent autosomal-dominant and autosomal-recessive ataxias
- 3. have now already all been identified, with no new repeat ataxias in the last 3 years

outline of the webinar

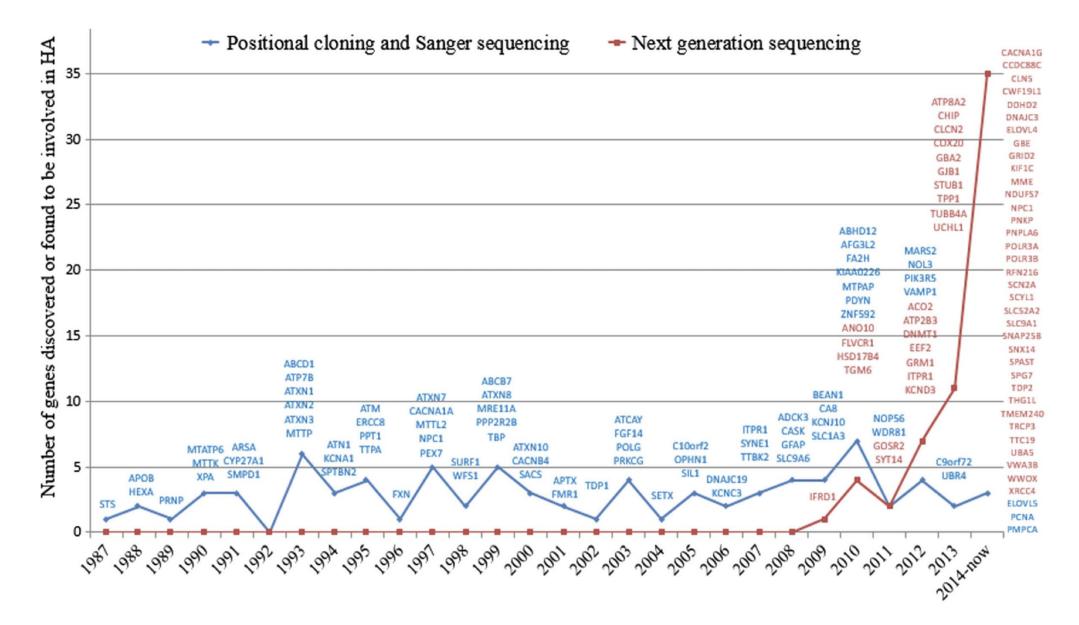
1. introduction

- 2. Sanger, panel, exome, genome: what are the differences, strengths and weaknesses?
- 3. *filter settings*: the crucial key in understanding NGS diagnostic and research reports
- 4. major international NGS ataxia pipelines and ways to contribute
- 5. outlook: the next steps in ataxia genomics
- 6. discussion & questions

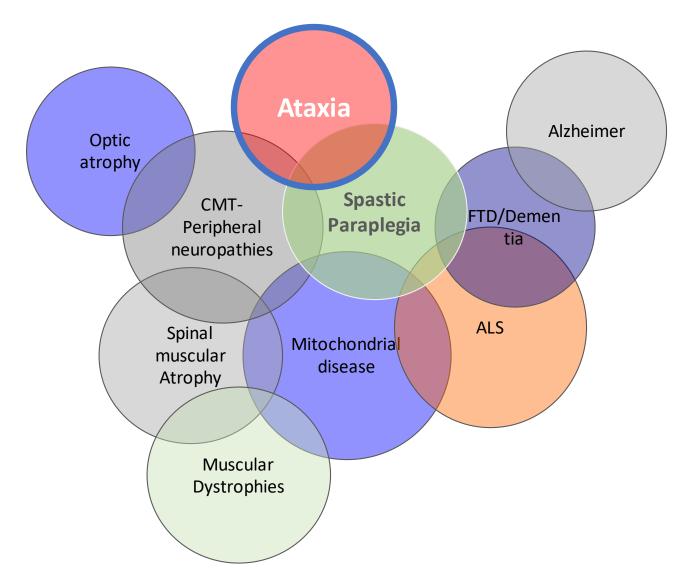
Andrea Nemeth

outline of the webinar

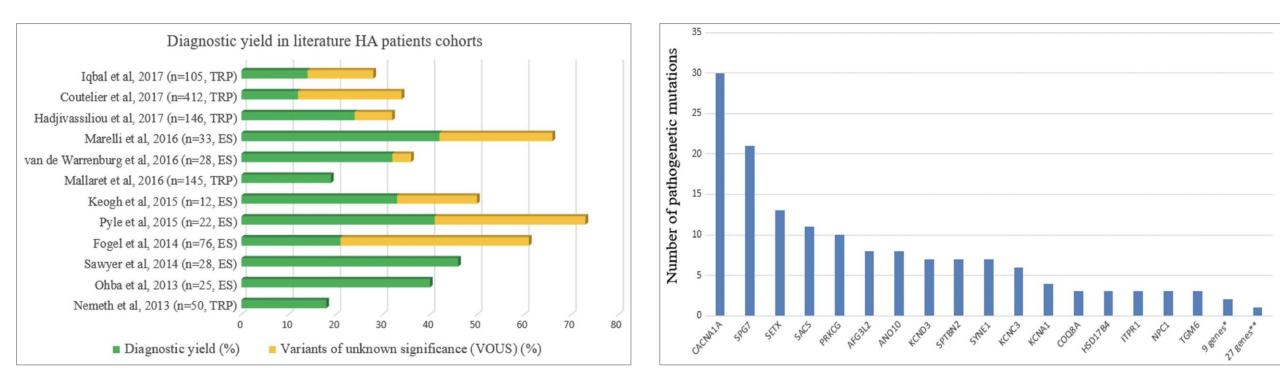
1. introduction


- 2. Sanger, panel, exome, genome: what are the differences, strengths and weaknesses?
- 3. *filter settings*: the crucial key in understanding NGS diagnostic and research reports
- 4. major international NGS ataxia pipelines and ways to contribute
- 5. outlook: the next steps in ataxia genomics
- 6. discussion & questions

Understanding NGS diagnostics


Stephan Zuchner, MD, PhD

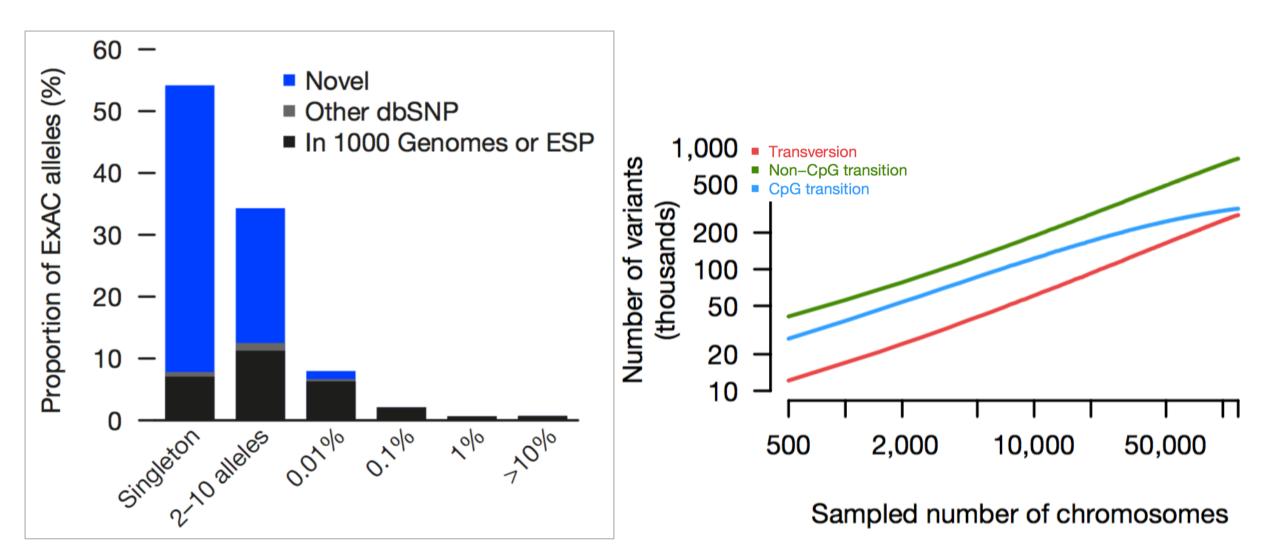
MANY genes can cause ataxia Filippo M. Santorelli and colleagues



Overlap between neurological diseases

- Overlapping phenotypes and genotypes
- An ataxia gene list might contain "HSP" genes

The diagnostic gap in ataxias is still substantial


Clinical application of next generation sequencing in hereditary spinocerebellar ataxia: increasing the diagnostic yield and broadening the ataxia-spasticity spectrum. A retrospective analysis

Daniele Galatolo¹ · Alessandra Tessa¹ · Alessandro Filla² · Filippo M. Santorelli¹

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek, Daniel McArthur

Excess of rare variation in the human genome at population level

ACMG criteria

https://www.acmg.net/docs/Standards_Guidelines_for_the_Interpretation_of_Sequence_Variants.pdf

	<u>ه</u>	Table 5 Rules for	combining criteria to classify sequence	Pathogenic		
	Strong	variants		loderate	Strong	Very strong
Population	MAF is too high for	Pathogenic	(i) 1 Very strong (PVS1) AND	population	Prevalence in	
data	disorder BA1/BS1 OR observation in controls		(a) ≥ 1 Strong (PS1–PS4) <i>OR</i>	s PM2	affecteds statistically increased over	
	inconsistent with		(b) \geq 2 Moderate (PM1–PM6) <i>OR</i>		controls PS4	
Computational	disease penetrance BS2		(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR	ssense change	Same amino acid	Predicted null
and predictive			(d) \geq 2 Supporting (PP1–PP5)	no acid residue	change as an	variant in a gene
data			(ii) ≥2 Strong (PS1–PS4) <i>OR</i>	different lic missense	established pathogenic variant	where LOF is a known
			(iii) 1 Strong (PS1–PS4) AND	as been seen M5	PS1	mechanism of disease
			(a)≥3 Moderate (PM1–PM6) <i>OR</i>	angth changing		PVS1
			(b)2 Moderate (PM1–PM6) <i>AND</i> ≥2 Supporting (PP1–PP5) <i>OR</i>	M4		
			(c)1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)			
Functional data	Well-established functional studies show	Likely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 	al hot spot tudied	Well-established functional studies	
	no deleterious effect BS3		 (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR 	ıl domain venign PM1	show a deleterious effect PS3	
	Nonsegregation		 (iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR 			
Segregation data	with disease BS4		(iv) ≥3 Moderate (PM1–PM6) OR	segregation data	>	
2002			 (v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR 	Table Server		
De novo data			(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)) (without / & maternity ed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Benign	(i) 1 Stand-alone (BA1) <i>OR</i>	ssive		
			(ii) ≥2 Strong (BS1–BS4)	s, detected with a		
		Likely benign	(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) <i>OR</i>	nic variant		
Other			(ii) ≥2 Supporting (BP1–BP7)			
database		Uncertain	(i) Other criteria shown above are not met OR			
Other data		significance	(ii) the criteria for benign and pathogenic are contradictory			

The challenge

Every exome contains:

- ~20,000 coding variants
- several hundred variants never seen before
- False positive variants calls
- False negative variants calls

Goal is to find the ONE disease causing change

Filtering of coding variation

What are reasonable filters to consider (without eliminating the disease variant)?

1. Inheritance pattern

- Family history may give essential clues to dominant or recessive inheritance, consanguinity (always take careful family history)

2. Quality of variations

- Low quality variants may be false positive 'calls'; exclude low coverage and low genotype quality calls

Filtering of coding variation

What are reasonable filters to consider (without eliminating the disease variant)?

- 3. Minor allele frequency (MAF) in the population
- A rare disease (prevalence <<1:1,000) especially caused by multiple different genes (locus heterogeneity) and many different mutations per gene (allele heterogeneity) cannot be caused by a variant that is present in 20% of all people in a population -> otherwise the disease prevalence would be higher
- For recessive cases: Minor allele frequency typically less than 1% in controls
- For dominant cases: Minor allele frequency typically 0% in controls

Inheritance pattern

Allele frequency

Quality

X

Known ataxia genes only

			Rev	view genot	vnes from 1	0000 reco	ords returne	d			
			Key	new genot	ypes nom 1	0000 Tect	Jus returne	u.			
🛓 Download Results	View parameter	s									
Genomic Position	Reference Allele	Alternate Allele	Family Number	Clinical Diagnosis	Variant Type	Gene Name ▲	Protein Notation	Maverick Score (NS)	Functional Rating	Conservation Rating	Allele Frequency
Chr12:9248233	T/T	C/C	🛛 AAD-CA	183518	Missense	A2M	Asn639Asp	0.00			Other
Chr12:9004892	C/C	A/A	🛛 AAD-CA	183518	Missense	A2ML1	Asp850Glu	0.00		**	Other
Chr12:9009820	G/G	G/A	🕏 AAD-CA	183518	Missense	A2ML1	Cys970Tyr	0.00	***	****	Other
Chr12:9016573	A/A	G/G	🛛 AAD-CA	183518	Missense	A2ML1	His1229Arg	0.00		**	Other
Chr12:9020489	A/A	G/G	🕏 AAD-CA	183518	Missense	A2ML1	Met1257Val	0.00		*	Other
Chr3:137843106	T/T	C/C	🕑 AAD-CA	183518	Stop retained	A4GNT		N/A		*	Other
Chr3:137843476	G/G	T/T	🕏 AAD-CA	183518	Missense	A4GNT	Ala218Asp	0.00		*	Other
Chr5:178195673	T/T	T/C	🕑 AAD-CA	183518	Splice region	AACSP1		N/A		*	Other
Chr3:151545601	G/G	A/A	🕏 AAD-CA	183518	Missense	AADAC	Val281IIe	0.00	*	****	Other
Chr3:151463421	G/G	G/T	🛛 AAD-CA	183518	Missense	AADACL2	Ala186Ser	0.00		*	Other
Chr 1 :12776344	A/A	T/T	🛛 AAD-CA	183518	Start lost	AADACL3	Met1?	N/A		*	Other
Chr1:12779618	T/T	C/C	🕑 AAD-CA	183518	Missense	AADACL3	Ser47Pro	N/A		****	Other
Chr 1 :12785494	G/G	T/T	🛇 AAD-CA	183518	Missense	AADACL3	Cys195Phe	N/A		*	Other
Chr4:170987636	A/A	A/G	🛛 AAD-CA	183518	Splice region	AADAT		N/A		**	Other
Chr15:67528374	T/T	T/G	AAD-CA	183518	Missense	AAGAB	lle132Leu	0.00		***	Other

- Inheritance pattern
- Allele frequency

Quality

Known ataxia genes only

Review genotypes from 496 records returned.

 \mathbf{X}

🛓 Download Results 🛛 View parameters

X

Genomic Position	Reference Allele	Alternate Allele	Family Number ▲	Clinical Diagnosis	Variant Type	Gene Name	Protein Notation	Maverick Score (NS)	Functional Rating	Conservation Rating	Allele Frequency
Chr 1 :155026813	A/A	A/G	🕏 AAD-CA	183518	Missense	ADAM15	Glu148Gly	0.75	*	****	Private
Chr1:161161016	G/G	G/A	AAD-CA	183518	Missense	ADAMTS4	Thr809Met	0.00	*	**	Rare
Chr11:130288992	G/G	G/A	🛛 AAD-CA	183518	Missense	ADAMTS8	Arg306Cys	0.90	*****	****	Rare
Chr4:100263945	A/A	A/T	⊘ AAD-CA…	183518	Splice region	ADH1C		N/A		*	Rare
Chr14:105404756	G/G	G/A	🛛 AAD-CA	183518	Stop gained	AHNAK2	Gln5678Ter	0.75		***	Rare
Chr 6 :151669838	G/G	G/T	⊘ AAD-CA…	183518	Splice region	AKAP12		N/A		*	Rare
Chr14:33015531	A/A	A/G	🔗 AAD-CA	183518	Missense	AKAP6	Asn558Asp	0.00		*	Rare
Chr6:13470102	C/C	C/T	🛇 AAD-CA	183518	Stop retained	AL583828.1		N/A		*	Rare
Chr 4 :113359634	T/T	T/C	🛇 AAD-CA	183518	Splice region	ALPK1		N/A			Rare
Chr 2 :131521383	G/G	G/A	🛇 AAD-CA	183518	Missense	AMER3	Gly580Arg	0.01		*	Rare
Chr 19 :17394492	C/C	C/T	🛛 AAD-CA	183518	Missense	ANKLE1	Pro307Ser	0.02		*	Rare
Chr2:97499281	TA/TA	TA/T	🛇 AAD-CA	183518	Splice region	ANKRD23		N/A			Rare
Chr10:37478440	G/G	G/T	⊘ AAD-CA…	183518	Missense	ANKRD30A	Ala767Ser	0.00		*	Other
Chr2:96514607	T/T	T/TA	⊘ AAD-CA…	183518	Splice region	ANKRD36C		N/A		*	Rare
	C (C	CIT		103510		40001		0.01	+	****	

- Inheritance pattern
- Allele frequency

Quality

Known ataxia genes only

Review genotypes from 68 records returned.

 \mathbf{X}

🛓 Download Results 🛛 View parameters

Genomic Position	Reference Allele	Alternate Allele	Family Number	Clinical Diagnosis	Variant Type	Gene Name ▲	Protein Notation	Maverick Score (REC)	Functional Rating	Conservation Rating	Allele Frequency
Chr11:108115638	G/G	G/T	🛛 AAD	183518	Missense	ATM	Leu262Phe	0.53	*	**	Private
Chr11:108175463	A/A	A/T	🛇 AAD-CA	183518	Missense	ATM	Asp1853Val	0.00	***	****	Rare
Chr17:65907298	A/A	A/G	🔗 AAD-CA	183518	Missense	BPTF	Lys1100Glu	0.00	*	****	Rare
Chr17:65907644	T/T	T/C	🛛 AAD-CA	183518	Missense	BPTF	lle1215Thr	0.00		*	Rare
Chr11:64604201	GAA/GAA	GAA/G	🛛 AAD-CA	183518	Splice region	CDC42BPG		N/A			Private
Chr11:64607024	C/C	C/T	🔗 AAD-CA	183518	Missense	CDC42BPG	Val2011le	0.00		*	Rare
Chr4:104030085	C/C	C/T	🔗 AAD-CA	183518	Missense	CENPE	Arg2629Gln	0.00		*	Rare
Chr4:104070041	G/G	G/A	🛛 AAD-CA	183518	Missense	CENPE	Thr1268lle	0.00		*	Other
Chr4:104080217	A/A	A/C	🔗 AAD-CA	183518	Missense	CENPE	Ser851Ala	0.00	*	***	Other
ChrX:47486217	C/C	T/T	🛇 AAD-CA	183518	Missense	CFP	Asp299Asn	0.00	*	**	Rare
Chr20:61452878	C/C	C/A	🛛 AAD-CA	183518	Missense	COL9A3	Pro122His	0.32	****	***	Rare
Chr20:61453970	G/G	G/T	🛛 AAD-CA	183518	Missense	COL9A3	Ala169Ser	0.06		*	Rare
Chr8:144940649	G/G	G/A	🔗 AAD-CA	183518	Missense	EPPK1	Thr2258Met	0.59	**	****	Rare
Chr8:144941879	G/G	G/A	🛛 AAD-CA	183518	Missense	EPPK1	Ala1848Val	0.00		*	Rare
	2012	12 <u>23/2</u> 14						121 222			02101

- Inheritance pattern
- Allele frequency

Quality

Known ataxia genes only

Review genotypes from 4 records returned.

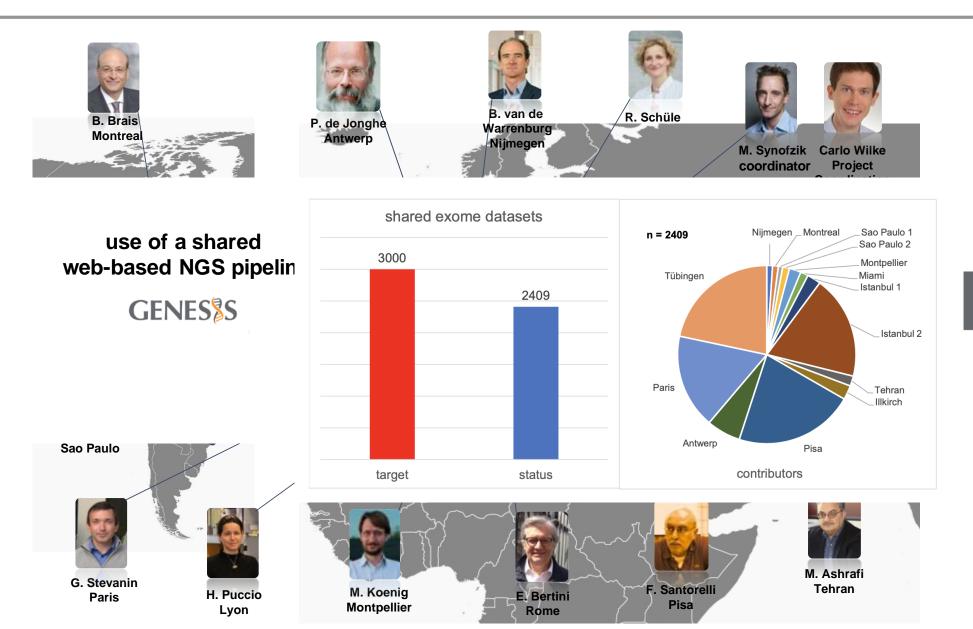
➡ Download Results View parameters

Genomic Position	Reference Allele	Alternate Allele	Family Number	Clinical Diagnosis	Variant Type	Gene Name ▲	Protein Notation	Maverick Score (REC)	Functional Rating	Conservation Rating	Allele Frequency
Chr11:108115638	G/G	G/T	🛇 AAD-CA	183518	Missense	ATM	Leu262Phe	0.53	*	**	Private
Chr11:108175463	A/A	A/T	🗸 AAD-CA	183518	Missense	ATM	Asp1853Val	0.00	***	****	Rare
Chr16:732223	C/C	C/T	🗸 AAD-CA	183518	Missense	STUB1	Pro243Leu	0.72	****	****	Rare
Chr16:731512	A/A	A/C	🗸 AAD-CA	183518	Missense	STUB1	Lys145GIn	0.01	**	****	Rare

GENESIS demo of additional details

Q&A

outline of the webinar

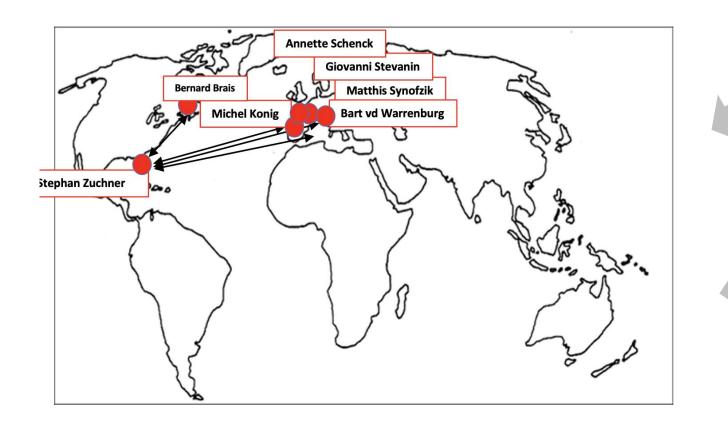

1. introduction

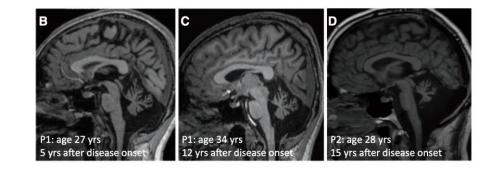
- 2. Sanger, panel, exome, genome: what are the differences, strengths and weaknesses?
- 3. *filter settings*: the crucial key in understanding NGS diagnostic and research reports
- 4. major international NGS ataxia pipelines and ways to contribute
- 5. outlook: the next steps in ataxia genomics
- 6. discussion & questions

PREPARE GENESIS. The world's largest collaborative ataxia

pipeline

GENES³S 2.0

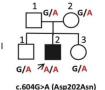

The power of global NGS ataxia data aggregation: example PNPLA6

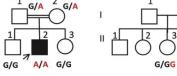


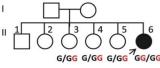
Synofzik et al, 2014, BRAIN

dystrophy

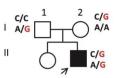
The power of global NGS ataxia data aggregation: PRDX3





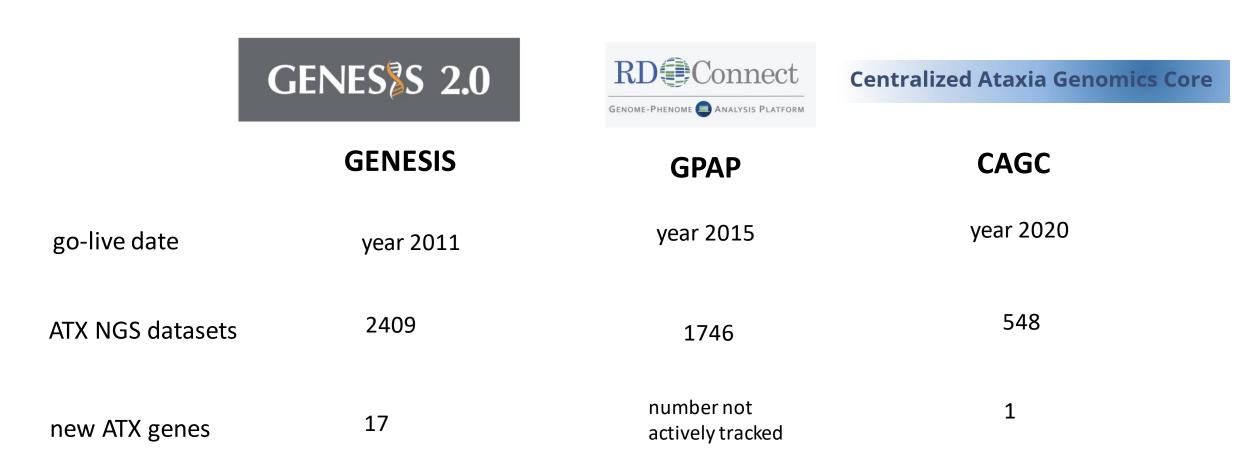

Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia

OAdriana P. Rebelo,¹ Ilse Eidhof,² Vivian P. Cintra,¹ Léna Guillot-Noel,^{3,4}
 Claudia V. Pereira,⁵ ⊙Dagmar Timmann,⁶ Andreas Traschütz,^{7,8} Ludger Schöls,^{7,8}
 Giulia Coarelli,³ Alexandra Durr,^{3,9} Mathieu Anheim,^{10,11} Christine Tranchant,^{10,11}
 ③Bart van de Warrenburg,¹² Claire Guissart,¹³ Michel Koenig,¹³ Jack Howell,¹
 Carlos T. Moraes,⁵ Annette Schenck,² Giovanni Stevanin,^{3,4} ⊚Stephan Züchner^{1,2} and
 ◎Matthis Synofzik^{7,8,2} on behalf of the PREPARE network



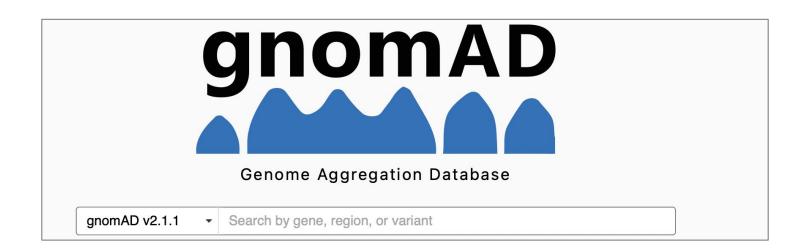
c.604G>A (Asp202Asn)

c.340dupG (Ala114GlyfsTer3)


1 2 7 7/T c.508C>T (Arg170Ter)

c.425C>G (Ala142Gly) c.37-2A>G (splice exon)

Rebelo et al, 2021, BRAIN

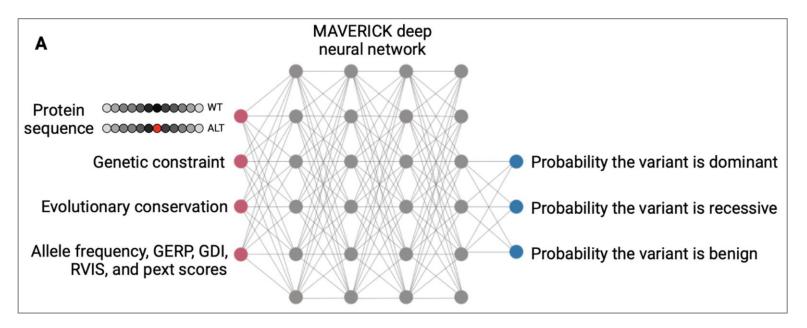


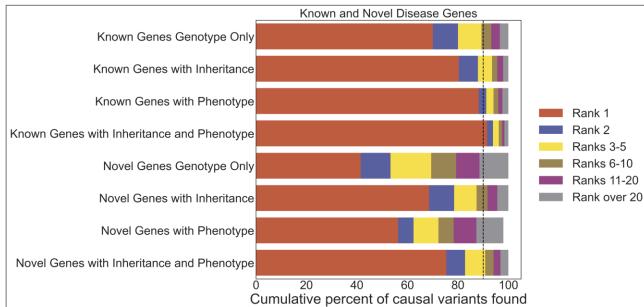
outline of the webinar

1. introduction

- 2. Sanger, panel, exome, genome: what are the differences, strengths and weaknesses?
- 3. *filter settings*: the crucial key in understanding NGS diagnostic and research reports
- 4. major international NGS ataxia pipelines and ways to contribute
- 5. outlook: the next steps in ataxia genomics
- 6. discussion & questions

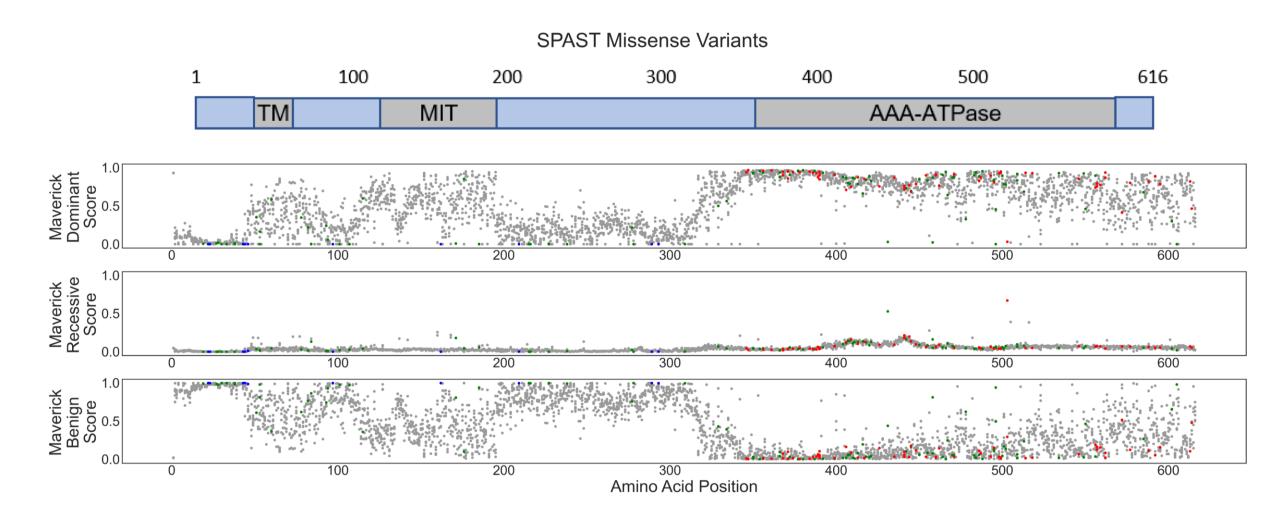
Better public resources

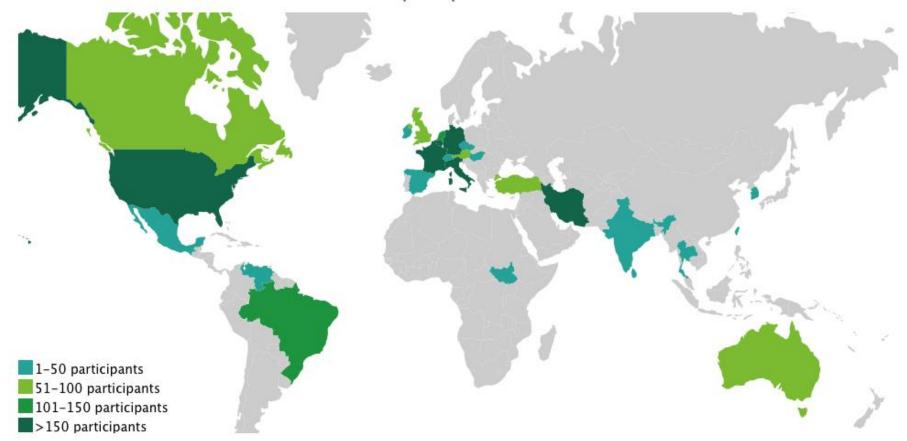

Explore the clinical relevance of genes & variants


ClinGen is a National Institutes of Health (NIH)-funded resource dedicated to building a central resource that defines the clinical relevance of genes and variants for use in precision medicine and research.

Q Gene - Enter a gene symbol or HGNC ID (Examples: ADNP, HGNC:15766)

Search

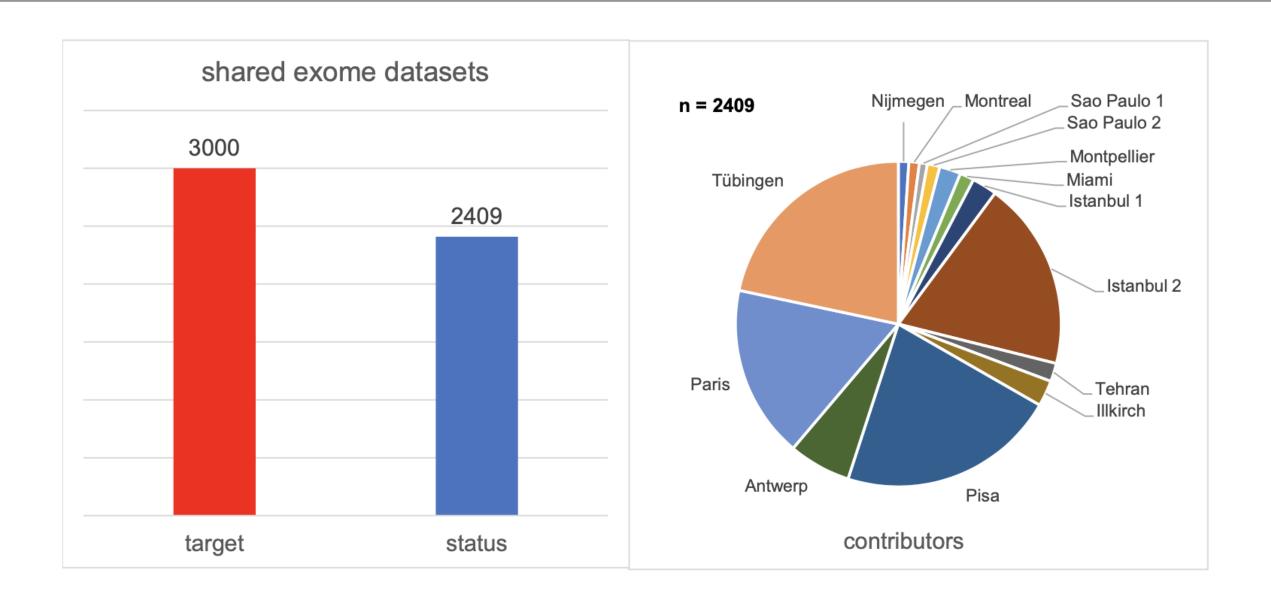

Machine learning in neural networks (MAVERICK)


- We have created a transformer based neural network to predict pathogenicity
- Currently tested within
 GENESIS

Pathogenicity simulation of all possible changes in diseases genes

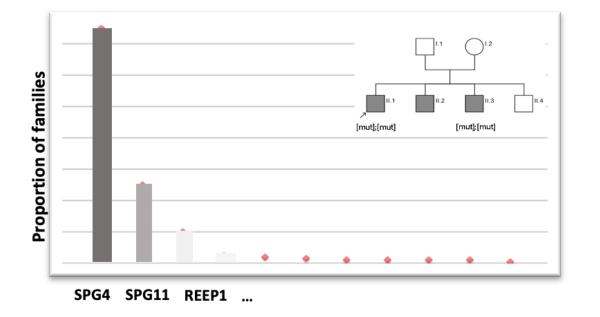
Known pathogenic or benign variants in SPAST

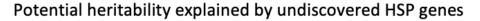
Global rare disease database GENESIS with >16,000 datasets

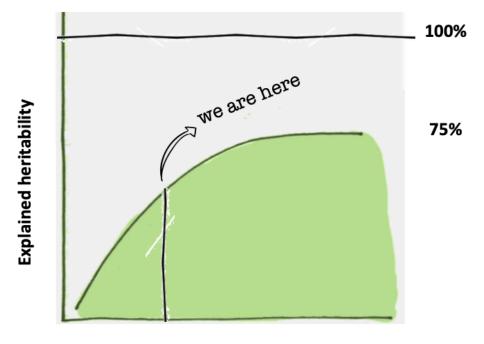

Genesis participants worldwide

>80 Mendelian gene discoveries.

~200 citations 70 phenotypes (mostly neuromuscular/

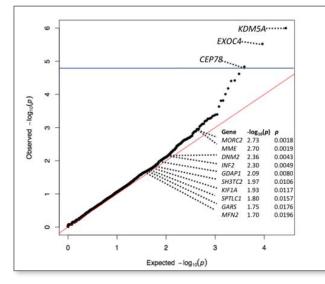

neurodegenerative)


GENESIS: a success story of a collaborative ataxia NGS pipeline

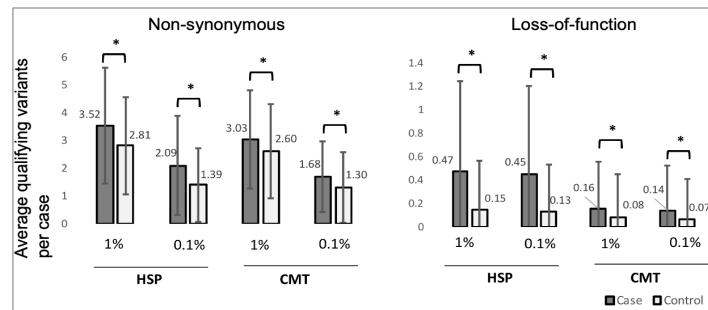


Remaining Heritability

- Some 30% of cases with HSP and related disorders are genetically undiagnosed
- New genes explain low proportion of heritability
- Many remaining genes not reaching 100%



HSP genes


Rare Variant Burden on HSP and CMT genes

Cases

Controls

EXOC4				۲		0	•
1.33e+98	193	1	1334000	000	133600	0000	0 00
EXOC4 hete		arrier risk EXOC4	Allele: p.G	ily550Arg	_		
EXOC4 hete		11111111111111111111111111111111111111	Allele: p.G Case	ily550Arg Control			
EXOC4 hete	Gene:	EXOC4	1.00				
	Gene: Case	EXOC4 Control	Case	Control			
Carrier	Gene: Case 15	EXOC4 Control 16	Case 13	Control 4			
Carrier Non-carrier	Gene: Case 15 328	EXOC4 Control 16	Case 13 330	Control 4			

Exome Sequence Analysis Suggests That Genetic Burden Contributes to Phenotypic Variability and **Complex Neuropathy**

Claudia Gonzaga-Jauregui ¹, Tamar Harel ², Tomasz Gambin ², Maria Kousi ³, Laurie B Griffin ⁴ , Ludmila Francescatto ³, Burcak Ozes ⁵, Ender Karaca ², Shalini N Jhangiani ⁶, Matthew N Bainbridge ⁶, Kim S Lawson ⁷, Davut Pehlivan ², Yuji Okamoto ², Mariorie Withers ², Pedro Mancias⁸, Anne Slavotinek⁹, Pamela J Reitnauer¹⁰, Meryem T Goksungur¹¹, Michael Shy¹² , Thomas O Crawford ¹³, Michel Koenig ¹⁴, Jason Willer ³, Brittany N Flores ¹⁵, Igor Pediaditrakis ³, Onder Us ¹⁶, Wojciech Wiszniewski ², Yesim Parman ¹¹, Anthony Antonellis ¹⁷, Donna M Muzny ⁶, Baylor-Hopkins Center for Mendelian Genomics; Nicholas Katsanis ³, Esra Battaloglu ⁵ , Eric Boerwinkle ¹⁸, Richard A Gibbs ¹⁹, James R Lupski ²⁰

Assessing non-Mendelian Inheritance in Inherited Axonopathies

Dana M. Bis-Brewer¹, Ziv Gan-Or^{3,4,12}, Patrick Sleiman², Inherited Neuropathy Consortium, Hakon Hakonarson², Sarah Fazal¹, Steve Courel¹, Vivian Cintra¹, Feifei Tao¹, Mehrdad A. Estiar^{3,4}, Mark Tarnopolsky⁵, Kym M. Boycott⁶, Grace Yoon^{7,8}, Oksana Suchowersky⁹, Nicolas Dupré^{10,11}, Andrew Cheng¹³, Thomas E. Lloyd¹³, Guy Rouleau^{3,4,12}, Rebecca Schüle¹⁴, Stephan Züchner¹

outline of the webinar

1. introduction

- 2. Sanger, panel, exome, genome: what are the differences, strengths and weaknesses?
- 3. *filter settings*: the crucial key in understanding NGS diagnostic and research reports
- 4. major international NGS ataxia pipelines and ways to contribute
- 5. outlook: the next steps in ataxia genomics
- 6. discussion & questions

THANK YOU!